Reference Abele (1974)	Location North calcareous Alps	Area (10%km²) 61	Geology	Study Period		Number of Cases	Frequency ¹ (cases/year /10,000 km ²)	Return period (years per 10,000 km
				postglacial	11,00 0	40	0.0006	1,670
Abele (1974)	South calvareous Alps	28	sedimentary	postglacial	11,00 0	32	0.0010	1,000
Whitehouse and Griffiths (1983)	Central New Zealand	10	sedimentary	postglacial	10,25 0	14	0.0014	714
Cruden (1985)	Alberta Rockies, Canada	60	sedimentary	postglacial	11,00 0	129	0.0019	526
Eisbacher (1979)	Mackenzie Mtns. N.W.T., Canada	27	sedimentary	postglacial	11,00 0	14	0.0005	2,000
Abele (1974)	Central Alps	82	metamorphic and crystalline	postglacial	11,00 0	21	0.0002	5,000
Evans (unpublished)	Coast Range, B.C., Canada	12	metamorphic and crystalline	2,000 B.P. to present	2,000	3	0.0012	833
Abele (1974)	The Alps	176	mixed	postglacial	11,00 0	93	0.0005	2,000
Eisbacher and Clague (1984)	The Alps	176	mixed	1,200 A.D. to 1,984	784	8	0.0006	1,670

Why excessive travel distance?

- air cushion hypothesis (Shreve, 1968)
- fluidization by air/steam
- mechanical (roller bearing) fluidization
- acoustic fluidization (Melosh, 1979)
- frictional melting (Erissman, 1978)
- undrained loading mud lubrication (Heim, 1881)

Acoustic fluidization ? (Melosh, 1979)

Vibration created by the boundary conditions of the flow bed (not a material characteristic)

-Is the vibration harmonic? -Why volume dependence?

Calibration:

- 1. Compile data on path geometry and character,
- 2. Debris distribution, velocities
- 3. Select cases similar to the slide un question
- 4. Run program to obtain requisite runout
- 5. Compare debris thickness, velocity distribution
- 6. Select the "best fit" rheology and parameters

Conclusions: Rock avalanches are complex, but predictions are possible. Our approach is to concentrate on the external aspects of behaviour. We consider the micro-mechanics intractable. We should be open-minded about the rheological character of rock avalanche motion Analysis must consider the character of material forming the path Material entrainment should be considered