TD de radiochronologie

Exercice n°1 : L'âge de la Terre

Dans cet exercice nous calculerons par la méthode Rubidium-Strontium l'âge d'un gneiss prelevé au Groenland, celui d'un minéral , le zircon, trouvé en Australie et l'âge d'une chondrite. On a reporté l'ensemble des données dans le tableau suivant :

- 1. Rappeler le principe de la méthode Rubidium-Strontium
- 2. Les données :

Echantillons	87Rb/86Sr	87Sr/86Sr
Chondrite 1	$0,5\pm0,06$	0,73226±0,005
Chondrite 2	1,5±0,07	$0,79878\pm0,006$
Chondrite 3	2±0,07	$0,83204\pm0,006$
Gneiss 1	$0,75\pm0,06$	0,75158±0,005
Gneiss 2	1,3±0,07	$0,78208\pm0,006$
Gneiss 3	1,8±0,07	$0,80980\pm0,006$
Zircon 1	0.8 ± 0.05	$0,75496\pm0,005$
Zircon 2	1,1±0,06	$0,77294\pm0,006$
Zircon 3	1,4±0,07	0,79093±0,006

- 2.1. Représenter sur un graphe le rapport isotopique du 87Sr/86Sr en fonction du rapport isotopique 87Rb/86Sr pour chaque échantillon.
- 2.2. A partir de ces graphes, determinez pour chaque échantillon l'âge du gneiss, du zircon et de la chondrite. On donne la constante de désintégration radioactive du Rubidium, $\lambda = 1,42 \ 10^{-11} \ an^{-1}$.
- 2.3. Déterminez le rapport initial 87Sr/86Sr : que représente-il ?

Exercice n°2: datation d'un évènement métamorphique

Les données suivantes (roche totale et minéraux séparés) proviennent du gneiss de Baltimore.

Echantillon	87 86 Rb/ Sr	87 86 Sr/ Sr
Roche 1	2,244	0,7380
Roche 2	3,642	0,7612
Roche 3	6,59	0,7992
Biotite	289,7	1,969
Feldspaths K	5,6	0,8010
Plagioclase	0,528	0,7767
Roche 4	0,2313	0,7074
Roche 5	3,628	0,7573
Biotite	116,4	1,2146
Feldspaths K	3,794	0,7633
Plagioclases	0,2965	0,7461

- a. Interpréter les données au moyen des diagrammes isochrones adéquats. b. Déterminer les âges et les rapports (87 86 86) initiaux

Pente sur roches totales = (87Sr/86Sr)initial = (87Sr/86Sr)initial = Pente sur roche 3 =

Pente sur roche 4 = (87Sr/86Sr)initial =

Age sur roches totales =

Age sur roche3 =

Age sur roche4 =

Exercice n°3: le couple Sm/Nd

Ces données ont été obtenues sur une coulée de komatiite (basaltes archéens) au Canada.

Echantillon	147 144	143 144
	Sm/ Nd	Nd/ Nd
M654	0,2427	0,513586
M656	0,2402	0,513548
M663	0,2567	0,513853
M657	0,2381	0,513511
AX14	0,2250	0,513280
AX25	0,2189	0,513174
M666	0,2563	0,513842
M668	0,2380	0,513522

- a. Reporter ces données dans un diagramme isochrone. b. Calculer l'âge Sm-Nd (on donne λ = 6,54 10^{-12} an⁻¹).

Equation de l'isochrone :

Age de la roche =

Intersection à l'origine et détermination de (143Nd/144Nd)initial =