COURS 1

1 Coordonnées sphériques

- 1.1 Changement de coordonnées
- 1.2 Coordonnées sphériques orthogonales
- 1.3 Vecteurs unités dans le système de coordonnées sphériques
- 1.4 Eléments d'arc et de volume
- 1.5 Matrices de changement de base

2 Trigonométrie sphérique

- 2.1 Grand cercle
- 2.2 Le triangle sphérique
- 2.3 Relations entre les angles et les côtés d'un triangle sphérique
- 2.4 Exemples
 - 2.4.1 Exercice 1
 - 2.4.2 Calcul de la distance entre Paris et Moscou
 - 2.4.3 Equation d'un petit cercle sur la sphère
 - 2.4.4 Equation d'un grand cercle sur la sphère

3 Cinématique sur la sphère

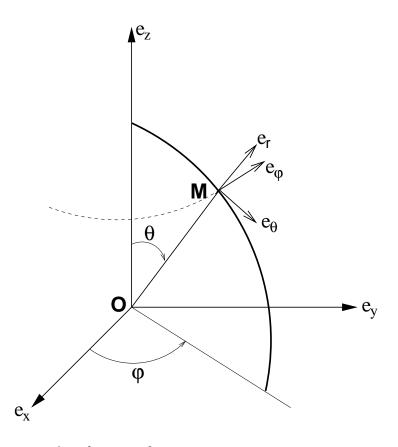
1 Coordonnées sphériques

Du fait de sa forme presque sphérique, la Terre s'étudie au mieux à partir d'une représentation de tous les paramètres dans un système de coordonnées sphériques.

1.1 Changement de coordonnées

La position d'un point M peut être spécifié soit par (x, y, z) ses coordonnées cartésiennes soit par (r, θ, φ) ses coordonnées sphériques.

$$x = r \sin \theta \cos \varphi; \quad y = r \sin \theta \sin \varphi; \quad z = r \cos \theta$$
 (1)



L'équation (1) peut se résoudre en r, θ, φ :

$$r = \sqrt{x^2 + y^2 + z^2}; \quad \theta = \arctan \frac{\sqrt{x^2 + y^2}}{z}; \quad \varphi = \arctan \frac{y}{x}$$
 (2)

avec
$$0 \le r \le \infty$$
; $0 \le \theta \le \pi$; $0 \le \varphi \le 2\pi$ (3)

La restriction (3) assure l'unicité de la correspondance entre (x,y,z) et (r,θ,φ) . Les ensembles d'équations (1) ou (2) définissent un changement de coordonnées.

1.2 Coordonnées sphériques orthogonales

Les surfaces r=cste (coquille), $\theta=cste$ (parallèle) et $\varphi=cste$ (méridien) se coupent chacune deux à deux suivant des courbes appelées courbes ou droite de coordonnées. Les courbes de coordonnées r,θ,φ sont analogues aux axes de coordonnées x,y,z d'un repère rectangulaire. Les surfaces de coordonnées se coupent en formant des angles droits: le système de coordonnées sphériques est orthogonal.

1.3 Vecteurs unités dans le système de coordonnées sphériques

Soit la base cartésienne orthonormée de vecteurs unitaires \vec{e}_x , \vec{e}_y et \vec{e}_z .

A partir des vecteurs normaux aux surfaces de coordonnées, on peut définir une base dite naturelle \vec{E}_r , \vec{E}_θ et \vec{E}_φ telle que:

$$\begin{cases}
\vec{E}_r = \frac{\partial \overrightarrow{OM}}{\partial r} \\
\vec{E}_{\theta} = \frac{\partial \overrightarrow{OM}}{\partial \theta} \\
\vec{E}_{\varphi} = \frac{\partial \overrightarrow{OM}}{\partial \varphi}
\end{cases} \tag{4}$$

Cette base est orthogonale mais non normée: On note

$$h_r = \sqrt{\vec{E}_r \cdot \vec{E}_r}; \quad h_\theta = \sqrt{\vec{E}_\theta \cdot \vec{E}_\theta}; \quad h_\varphi = \sqrt{\vec{E}_\varphi \cdot \vec{E}_\varphi}$$

Les quantités h_r , h_θ et h_φ s'appellent les facteurs de proportionnalité:

$$h_r = 1; \quad h_\theta = r; \quad h_\omega = r \sin \theta$$

On peut définir une base physique orthonormée:

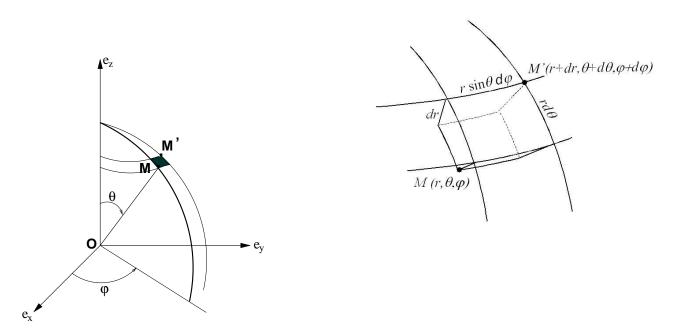
$$\begin{cases}
\vec{e}_r = \frac{\partial \overrightarrow{OM}}{\partial r} \\
\vec{e}_\theta = \frac{1}{r} \frac{\partial \overrightarrow{OM}}{\partial \theta} \\
\vec{e}_\varphi = \frac{1}{r \sin \theta} \frac{\partial \overrightarrow{OM}}{\partial \varphi}
\end{cases} \tag{5}$$

On a alors:

$$\vec{e_r} = \begin{pmatrix} \sin\theta\cos\varphi \\ \sin\theta\sin\varphi \\ \cos\theta \end{pmatrix}_{\vec{e_x},\vec{e_y},\vec{e_z}} \qquad \vec{e_\theta} = \begin{pmatrix} \cos\theta\cos\varphi \\ \cos\theta\sin\varphi \\ -\sin\theta \end{pmatrix}_{\vec{e_x},\vec{e_y},\vec{e_z}} \qquad \vec{e_\varphi} = \begin{pmatrix} -\sin\varphi \\ \cos\varphi \\ 0 \end{pmatrix}_{\vec{e_x},\vec{e_y},\vec{e_z}}$$
(6)

1.4 Eléments d'arc et de volume

Soit un point M' proche du point M de coordonnées cartésiennes [x + dx, y + dy, z + dz] et sphériques $[r + dr, \theta + d\theta, \varphi + d\varphi]$. Alors que les éléments de longueurs de $\overline{MM'}$ projetés sur $\vec{e}_x, \vec{e}_y, \vec{e}_z$ seront [dx, dy, dz], ceux projetés dans les directions $\vec{e}_r, \vec{e}_\theta, \vec{e}_\varphi$ seront $dr, rd\theta, r\sin\theta d\varphi$.



On peut calculer l'abcisse curviligne $ds^2 = \overrightarrow{MM'} \cdot \overrightarrow{MM'}$:

$$ds^{2} = h_{r}^{2}dr^{2} + h_{\theta}^{2}d\theta^{2} + h_{\varphi}^{2}d\varphi^{2}$$

$$= dr^{2} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\varphi^{2}$$
(7)

L'élément de volume pour le système de coordonnées sphériques est donné par :

$$dV = h_r h_\theta h_\varphi dr d\theta d\varphi$$

$$= r^2 \sin \theta dr d\theta d\varphi$$
(8)

1.5 Matrices de changement de base

On peut exprimer les coordonnées cartésiennes $[A_x, A_y, A_z]$ d'un vecteur \vec{A} , en fonction des ses coordonnées sphériques $[A_r, A_\theta, A_\varphi]$ et vice-versa:

$$\vec{A} = A_x \vec{e}_x + A_y \vec{e}_y + A_z \vec{e}_z$$
$$= A_r \vec{e}_r + A_\theta \vec{e}_\theta + A_\varphi \vec{e}_\varphi$$

Ou encore en introduisant une matrice de passage:

$$\begin{pmatrix}
A_x \\
A_y \\
A_z
\end{pmatrix} = \begin{pmatrix}
\sin \theta \cos \varphi & \cos \theta \cos \varphi & -\sin \varphi \\
\sin \theta \sin \varphi & \cos \theta \sin \varphi & \cos \varphi \\
\cos \theta & -\sin \theta & 0
\end{pmatrix} \begin{pmatrix}
A_r \\
A_\theta \\
A_\varphi
\end{pmatrix}$$
(9)

Ou

$$\begin{pmatrix}
A_r \\
A_\theta \\
A_\varphi
\end{pmatrix} = \begin{pmatrix}
\sin\theta\cos\varphi & \sin\theta\sin\varphi & \cos\theta \\
\cos\theta\cos\varphi & \cos\theta\sin\varphi & -\sin\theta \\
-\sin\varphi & \cos\varphi & 0
\end{pmatrix} \begin{pmatrix}
A_x \\
A_y \\
A_z
\end{pmatrix}$$
(10)

Exercice: Soit un ellispoide de révolution, de demi-grand axe a et de demi petit-axe c. Sa surface est décrite, en cartésiennes, par l'équation:

$$\frac{x^2}{a^2} + \frac{y^2}{a^2} + \frac{z^2}{c^2} = 1$$

Ecrire cette surface en utilisant les coordonnées sphériques. On exprimera le rayon r comme une fonction de θ , φ . On note $\frac{a-c}{a}=\alpha$ l'aplatissement de l'ellipsoide.

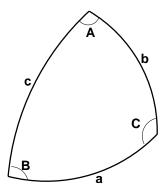
2 Trigonométrie sphérique

2.1 Grand cercle

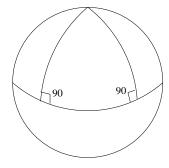
- Sur une sphère de rayon R, un grand cercle est un cercle de rayon R dont le centre est celui de la sphère (ex: les méridiens sont des grands cercles)
- Sur la sphère, la **géodésique** (le plus court chemin d'un point à un autre) est un grand cercle

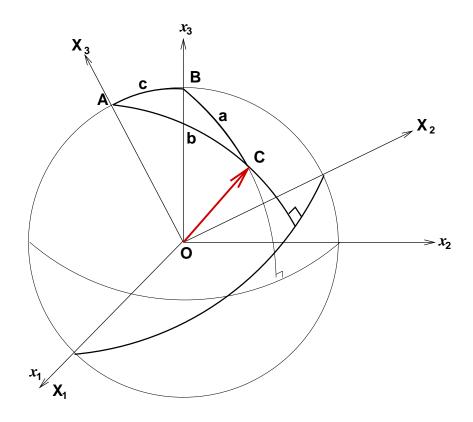
2.2 Le triangle sphérique

Un triangle sphérique est limité par des arcs de grands cercles.



- les côtés (a, b, c) d'un triangle sphérique s'expriment en unité d'angle.
- les angles dièdres (A, B, C) des plans (qui déterminent les grands cercles) s'expriment en unité d'angle.
- Remarque: la somme des angles d'un triangle sphérique diffèrent de 180°. Exemple:





2.3 Relations entre les angles et les côtés d'un triangle sphérique

On introduit deux bases : (O, x_1, x_2, x_3) et (O, x_1X_2, X_3) . On passe de l'une à l'autre par une rotation d'angle c autour de l'axe x_1 .

On note \underline{P} la matrice de passage de $(O, x_1X_2, X_3) \rightarrow (O, x_1, x_2, x_3)$:

$$\underline{P} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos c & -\sin c \\ 0 & \sin c & \cos c \end{pmatrix}$$

On calcule les composantes du vecteur \overrightarrow{OC} dans (O, x_1, x_2, x_3) puis dans (O, X_1X_2, X_3) :

$$\overrightarrow{OC}_{(O,x_1,x_2,x_3)} = \begin{pmatrix} \sin a \sin B \\ -\sin a \cos B \\ \cos a \end{pmatrix}; \qquad \overrightarrow{OC}_{(O,X_1X_2,X_3)} = \begin{pmatrix} \sin b \sin A \\ \sin b \cos A \\ \cos b \end{pmatrix}$$

On a la relation:

$$\overrightarrow{OC}_{(O,x_1,x_2,x_3)} = \underline{P} \cdot \overrightarrow{OC}_{(O,X_1X_2,X_3)}$$

On obtient alors le système:

$$\begin{cases} \sin b \sin A = \sin a \sin B \\ -\sin a \cos B = -\cos b \sin c + \sin b \cos c \cos A \\ \cos a = \cos b \cos c + \sin b \sin c \cos A \end{cases}$$
(11)

D'où les formules:

• Analogie des sinus:

$$\frac{\sin a}{\sin A} = \frac{\sin b}{\sin B} = \frac{\sin c}{\sin C} \tag{12}$$

• Formule de Gauss:

$$\cos a = \cos b \cos c + \sin b \sin c \cos A \tag{13}$$

• Formule des 4 éléments consécutifs:

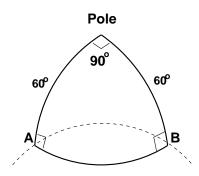
En combinant les équations (1) et (3) du sytème 11, on obtient:

$$\sin A \cot g B = \cot g b \sin c - \cos c \cos A \tag{14}$$

2.4 Exemples

2.4.1 Exercice 1

On modélise la Terre par une sphère de rayon R=6371 km.



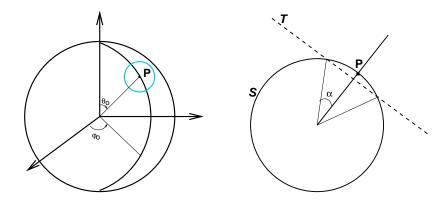
Calculer Δ la longueur de la géodésique entre A et B. Calculer δ la distance sur le cercle parallèle entre A et B.

2.4.2 Calcul de la distance entre Paris et Moscou

Paris :
$$\begin{cases} \text{latitude} & \theta_o = 48^o 50' 11.2" \\ \text{longitude} & \varphi_o = 2^o 20' 13.8" \end{cases} \quad \text{Moscou} : \begin{cases} \text{latitude} & \theta_1 = 55^o 45' 39.4" \\ \text{longitude} & \varphi_1 = 37^o 39' 53.1" \end{cases}$$

2.4.3 Equation d'un petit cercle sur la sphère

Soit un petit cercle centré en P (de colatitude θ_o et de longitude φ_o) et d'angle α . Une courbe sur une sphère unité s' écrira: $f(\theta, \varphi) = 0$.



Soit P le centre du petit cercle:

$$P \begin{cases} a_o = \sin \theta_o \cos \varphi_o \\ b_o = \sin \theta_o \sin \varphi_o \\ c_o = \cos \theta_o \end{cases}$$

Soit T le plan qui coupe la sphère unité S:

$$T: \begin{cases} a_o x + b_o y + c_o z + d = 0 \\ \text{avec } d = -\cos \alpha \end{cases} S: \begin{cases} x = \sin \theta \cos \varphi \\ y = \sin \theta \sin \varphi \\ z = \cos \theta \end{cases}$$

Le petit cercle C_1 est l'intersection du plan ${\bf T}$ et de la sphère ${\bf S}$: ${\bf C_1}={\bf T}\cap {\bf S}$. D'où :

 $C_1 : \sin \theta_o \cos \varphi_o \sin \theta \cos \varphi + \sin \theta_o \sin \varphi_o \sin \theta \sin \varphi + \cos \theta_o \cos \theta = \cos \alpha$

L'équation d'un petit cercle centré en $P(\theta_o, \varphi_o)$, de rayon l'angle α s'écrit:

$$\sin \theta_o \sin \theta \cos(\varphi - \varphi_o) + \cos \theta \cos \theta_o = \cos \alpha \tag{15}$$

2.4.4 Equation d'un grand cercle sur la sphère

On pose $\alpha = 90^{\circ}$ dans l'équation (15). D'où:

$$\cos(\varphi - \varphi_o) = -\cot \theta \cot \theta_o \tag{16}$$

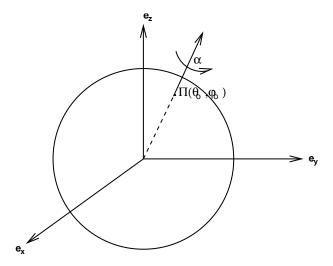
3 Cinématique sur la sphère

Comment décrire le mouvement d'un corps à la surface de la Terre?

Théorème d'Euler (1776): à la surface de la Terre on peut toujours passer d'un point à un autre par une rotation autour d'un axe.

Remarque: on travaille toujours dans une base fixée (axe Nord-Sud + axe équatorial Greenwich + axe équatorial 90° E de Greenwich); on la notera $(\vec{e}_x, \vec{e}_y, , \vec{e}_z)$.

Problème: on veut exprimer la matrice de rotation d'un angle α autour d'un axe passant par un pôle Π de colatitude θ_o , de longitude φ_o



On décompose ce mouvement (R) en plusieurs rotations:

- une rotation R_1 d'un angle φ_o par rapport à l'axe \vec{e}_3 (Nord-Sud) \Rightarrow on se ramène dans le méridien qui comprend le pôle Π .
- dans ce méridien, on fait une rotation R_2 d'angle θ_o pour amener l'axe \vec{e}_z au point Π .
- on fait une rotation R_3 par rapport à l'axe $O\Pi$ d'un angle α .

Par ce mouvement on a transformé le point P en P'. On veut exprimer ce point d'arrivée P' dans la base géographique initiale : il faut donc revenir dans le repère initial par deux rotations:

- une rotation d'angle $-\theta_o$: $-R_2$
- puis une rotation d'angle $-\varphi_o$: $-R_1$

Le mouvement complet (R) s'écrira donc:

$$(R) = (-R_1)(-R_2)(R_3)(R_2)(R_1)$$

Il faut exprimer chaque rotation dans le repère de coordonnées initial. Introduisons 3 matrices de rotation:

$$(\Phi_o) = \begin{pmatrix} \cos \varphi_o & -\sin \varphi_o & 0\\ \sin \varphi_o & \cos \varphi_o & 0\\ 0 & 0 & 1 \end{pmatrix}; (\Theta_o) = \begin{pmatrix} \cos \theta_o & 0 & \sin \theta_o\\ 0 & 1 & 0\\ -\sin \theta_o & 0 & \cos \theta_o \end{pmatrix}; (A) = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{pmatrix}$$

On a alors:

$$(R) = (\Phi_o)(\Theta_o)(A)(\Theta_o)^{-1}(\Phi_o)^{-1}$$

ou encore

$$\begin{cases} R_{11} = \cos \alpha [\sin^2 \varphi_o + \cos^2 \varphi_o \cos^2 \theta_o] + \cos^2 \varphi_o \sin^2 \theta_o \\ R_{12} = -\cos \theta_o \sin \alpha + \cos \varphi_o \sin \varphi_o \sin^2 \theta_o (1 - \cos \alpha) \\ R_{13} = \sin \theta_o [\sin \alpha \sin \varphi_o + (1 - \cos \alpha) \cos \theta_o \cos \varphi_o] \\ R_{21} = \cos \varphi_o \sin \varphi_o \sin^2 \theta_o (1 - \cos \alpha) + \cos \theta_o \sin \alpha \\ R_{22} = \sin^2 \varphi_o \sin^2 \theta_o + \cos \alpha (\cos^2 \varphi_o + \sin^2 \varphi_o \cos^2 \theta_o) \\ R_{23} = \sin \theta_o [\cos \theta_o \sin \varphi_o (1 - \cos \alpha) - \sin \alpha \cos \varphi_o] \\ R_{31} = \sin \theta_o [\cos \theta_o \cos \varphi_o (1 - \cos \alpha) - \sin \alpha \sin \varphi_o] \\ R_{32} = \sin \theta_o [\cos \theta_o \sin \varphi_o (1 - \cos \alpha) + \sin \alpha \cos \varphi_o] \\ R_{33} = \cos \alpha \sin^2 \theta_o + \cos^2 \theta_o \end{cases}$$

Exercice: Calcul du transformé P' du point New York $[P(\theta_p = 49^o, \varphi_p = 72^oW)]$ par la rotation d'angle $\alpha = 60^o$ et de pôle $\Pi(\theta_o = 45^o, \varphi_o = 0^o)$.

$$(R) = \begin{pmatrix} \frac{3}{4} & -\frac{\sqrt{6}}{4} & \frac{1}{4} \\ \frac{\sqrt{6}}{4} & \frac{1}{2} & -\frac{\sqrt{6}}{4} \\ \frac{1}{4} & \frac{\sqrt{6}}{4} & \frac{3}{4} \end{pmatrix} \qquad \overrightarrow{OP} = \begin{pmatrix} \sin \theta_p \cos \varphi_p \\ \sin \theta_p \sin \varphi_p \\ \cos \theta_p \end{pmatrix} = \begin{pmatrix} 0.233 \\ -0.718 \\ 0.656 \end{pmatrix}$$

On a alors: $\overrightarrow{OP'}=(R)\cdot\overrightarrow{OP}=\begin{pmatrix}0.778\\-0.618\\0.111\end{pmatrix}$, point de colatitude 83.6° et de longitude 38.4°W.