Licence Sciences et Applications - Mention STEP - S4 Parcours IUP GdE PHYSIQUE de L'ENVIRONNEMENT - TD TTT 1

- 1- Soit un fluide quelconque dont l'équation d'état se met sous la forme f(P,V,T)=0. En supposant P constant, établir une relation entre la quantité $(\partial T/\partial V)_{P=cste}$ et les termes de la différentielle totale de f. Idem pour les quantités $(\partial P/\partial T)_V$ et $(\partial V/\partial P)_T$. Que vaut le produit $(\partial T/\partial V)_P \times (\partial P/\partial T)_V \times (\partial V/\partial P)_T$? Rappeler l'expression des coefficients thermoélastiques et montrer que $\alpha=\beta\chi P$.
- 2- On recherche l'équation d'état d'un gaz à partir de la connaissance de ses coefficients thermoélastiques. L'expérience montre que $\alpha = nR/PV$ et $\beta = 1/T$. Combien de coefficients thermoélastiques sont-ils nécessaires pour trouver l'équation d'état d'une substance ? À partir des définitions de α et β , établir l'équation d'état de ce gaz.
- 3- Soit un système constitué d'une unité de masse d'un échantillon de matière homogène (gaz, liquide, solide) dont les propriétés macroscopiques sont bien définies par les variables thermodynamiques P, V et T, liées par une équation d'état f(P, V, T)=0. Faisons subir à ce système une transformation infinitésimale quasi-statique qui le fait passer de l'état (P, V, T) à l'état (P+dP, V+dV, T+dT). Seules les forces de pressions interviennent pour le travail.
- 3a- Exprimer la variation d'énergie interne du système dU (premier principe).
- 3b- Soit (T, V) le couple de variables indépendantes, exprimer dU, et en déduire δQ en fonction des 2 coefficients calorimétriques c_V et l, et de dT et dV. Expliciter les coefficients c_V et l en fonction de U (ou de ses dérivées partielles).
- 3c- Soit (T, P) le couple de variables indépendantes, exprimer dH. Exprimer $\delta Q(dH, V, dP)$. En déduire $\delta Q(c_P, h, dT, dP)$. Expliciter c_P et h en fonction de H (ou de ses dérivées partielles).
- 3d- Soit (P, V) le couple de variables indépendantes, exprimer dU, et en déduire δQ en fonction des 2 coefficients calorimétriques μ et λ , et de dP et dV. Expliciter les coefficients μ et λ en fonction de U (ou de ses dérivées partielles).
- 3e- Ces expressions sont-elles valides pour des transformations irréversibles ? Pourquoi ?
- 4- Nous avons implicitement supposées égales les différentes expressions de δQ ($\delta Q = c_V dT + ldV$; $\delta Q = c_P dT + hdP$; $\delta Q = \lambda dP + \mu dV$), mais δQ n'est pas une différentielle totale, et il n'est pas certain qu'on obtienne le même résultat suivant qu'on augmente d'abord la pression à volume constant, puis le volume à pression constante, ou qu'on fasse l'inverse pour aboutir au même résultat final. On se propose de montrer que ces 3 expressions sont identiques. Pour ce faire, nous allons faire subir à une unité de masse d'un échantillon de matière homogène (notre système) dont les propriétés macroscopiques sont définies par les variables thermodynamiques P, V et T liées par une équation d'état f(P, V, T) = 0, différents cycles de transformations infinitésimales quasi-statiques avec A(P,V,T) et C(P+dP, V+dV, T+dT). Le premier cycle est constitué des transformations : isochore (AB), isobare (BC), isochore (CD), et isotherme (DA). Le troisième cycle est constitué des transformations : isotherme (AB), isobare (BC), isochore (CD), et isotherme (DA). Pour chaque cycle :
- 4a- Tracer le cycle sur un diagramme de Clapeyron.
- 4b- Par application du premier principe, écrire l'équation régissant la variation d'énergie interne sur ce cycle, en notant w le travail reçu, et en exprimant les quantités de chaleur δQ en fonction des coefficients calorimétriques (λ , μ , c_P , h pour le 1^{er} cycle, λ , μ , c_V , l pour le 2^{ème} cycle, c_V , c_P , h, l pour le 3^{ème} cycle).
- 4c- Quel est le signe de w? Quel est son ordre de grandeur par rapport à δQ du cycle?
- 4d- En déduire une relation liant λ , μ , c_P , h (1^{er} cycle), λ , μ , c_V , l (2^{ème} cycle), et c_V , c_P , h, l (3^{ème} cycle)

5- L'exercice précédent nous a permis de montrer que les différentes expressions de δQ en fonction des coefficients calorimétriques sont équivalentes. Ceci implique que les différents coefficients calorimétriques ne sont pas indépendants. Montrons leurs relations.

5a- Exercice préliminaire : Soit T une fonction implicite de P et V. Soit P une fonction implicite de T et V. Écrire les différentielles totales dT et dP. En déduire la valeur des produits $(\partial P/\partial T)_V (\partial T/\partial P)_V$ et $-(\partial P/\partial T)_V (\partial T/\partial V)_P$.

5b- En explicitant la différentielle totale de la fonction implicite P(T, V), montrer que $h = (c_V - c_P)(\partial T/\partial P)_V$ et $l = (c_P - c_V)(\partial T/\partial V)_P$.

5c- En explicitant la différentielle totale de la fonction implicite P(T, V), montrer que $\lambda = c_V \cdot (\partial T/\partial P)_V$ et $\mu = c_P \cdot (\partial T/\partial V)_P$.

6. De la vapeur de Fréon 12 (CF2Cl2) de masse volumique ρ (masse molaire M) circule dans un tube de section S et entre dans un compresseur à P=2 bar et T=20 °C. Le débit massique vaut 0.05 kg.s⁻¹.

6a. Quelle relation lie \dot{m} , ρ , S, et \hat{V} la vitesse du fluide ? Par utilisation de l'équation d'état, expliciter la relation ρ =f(P, M, R, T).

6b. Quel est le plus petit diamètre de tube qui peut être utilisé si la vitesse du réfrigérant ne doit pas excéder 10 m.s⁻¹.

Données: $M_C=12$, $M_F=19$ et $M_{Cl}=35,5$ (en g.mol⁻¹).

7. De l'air est chauffé à l'aide d'un dispositif électrique, dans un tube horizontal de diamètre constant au cours d'une évolution en régime permanent. À l'entrée, l'air a une vitesse v_e de 5 m.s⁻¹, sous une pression P_e =3,5 bar et une température T_e =20 °C. À la sortie, l'air est sous une pression P_s =3,2 bar et une température T_s =90 °C, et a une vitesse v_s .

7a- À partir de la condition de régime permanent (m_e =- m_s), établir une relation entre v_s et v_e en fonction P_e , P_s , T_e et T_s . Calculer v_s .

7b- Écrire le premier principe généralisé pour ce cas particulier, et exprimer la quantité de chaleur massique Q/m échangée.

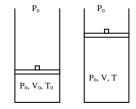
7c- Exprimer la variation d'enthalpie massique Δh en fonction des températures (T_e , T_s), de la masse molaire M de l'air, de la constante des gaz parfaits (R), et de γ le rapport des chaleurs massiques. 7d- Calculer la quantité de chaleur massique échangée.

Données: M=28,96 g.mol⁻¹, γ =1,4 pour l'air.

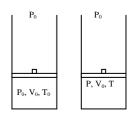
<u>Domices.</u> W1–20,70 g.mor , γ–1,4 pour ran.

8. On se propose de montrer qu'un gaz parfait obéit aux lois de Gay-Lussac et de Charles, et vice versa.

8a- On fait subir à un gaz parfait la transformation (voir figure ci-contre) qui consiste à le chauffer à la pression constante P_0 (on pourra imaginer que le piston est sans masse et sans frottement, auquel cas P_0 serait celle de la pression atmosphérique extérieure). Dans l'état initial la température et le volume sont respectivement T_0 et V_0 . Dans l'état final, la température est devenue T et le volume V. Montrer que ce gaz obéit à la loi de Gay-Lussac.



8b- On fait subir à un gaz parfait la transformation (voir figure ci-contre) qui consiste à le chauffer à volume constant V_0 , le piston étant maintenu par une goupille. Dans l'état initial la température et la pression sont respectivement T_0 et P_0 . Dans l'état final, la température est devenue T et la pression P. Montrer que ce gaz obéit à la loi de Charles.



8c- Considérons un gaz satisfaisant aux lois de Gay-Lussac et de Charles. À partir de la définition du coefficient de dilatation à pression constante et du coefficient d'augmentation de pression à volume constant, établir une relation entre V et T sous la forme $V = T.\varphi(P)$, et entre P et T sous la forme $P=T.\psi(V)$. En déduire que le gaz est parfait.