The Earth system:

A natural energy storage device

1. System Earth is storing solar energy on long timescales

PHOTOSYNTHESIS

$$CO_2 + 4 H^+ + 4 e^- ---> CH_2O + H_2O$$

$$2 H_2O ---> 4 H^+ + 4 e^- + O_2$$

$$CO_2 + H_2O \longrightarrow CH_2O + O_2$$

RESPIRATION

$$CH_2O + H_2O < ---> CO_2 + 4 H^+ + 4 e^ 4 H^+ + 4 e^- + O_2 ---> 2 H_2O$$

$$CH_2O + O_2 ---> CO_2 + H_2O$$

10¹⁶ moles of C/yr

Carbon cycle

ATMOSPHERE 6 10¹⁶ mol

10¹⁶ mol C/yr

BIOMASS 10¹⁷ mol

Organic matter in rocks
Fossil fuels

1013 mol C/yr

Notion of residence time

ATMOSPHERE Few years

10¹⁶ mol C/yr

BIOMASSFew years

Organic matter in rocks
Fossil fuels

10¹³ mol C/yr 100 MILLION YEARS

A very long term equilibrium

$$\delta C_{\text{org}} = -25 \text{ pmil}$$

 $\delta C_{\text{ox}} = 0$
 $\delta C_{\text{tot}} = -5 \text{ pmil}$

$$\delta C_{tot} = X \delta C_{org} + (1-X) \delta C_{ox}$$

$$X = 0.2$$

Efficiency of energy accumulation is linked

to deep biosphere metabolisms

$$CH_2O + H_2O ---> CO_2 + 4 H^+ + 4 e^-$$

Electron Acceptors in subsurface

-SO₄²⁻ (sulfate reducers)
-Fe³⁺ (ferric iron reducer

(ferric iron reducers)

Example:dissimilatory iron reducing bacteria (DIRB)

$$CH_2O + H_2O ---> CO_2 + 4 H^+ + 4 e^-$$

FeOOH + 3 H⁺ + e⁻ ---> Fe²⁺ +
$$2H_2O$$

 $CH_2O+4FeOOH+8H^+ --> CO_2+4 Fe^{2+}+7H_2O$

AN INTERESTING BY-PRODUCT (MATERIAL SCIENCES): MAGNETOTACTIC BACTERIA

2. System Earth is retrieving energy by oxidation of the inside by the outside

Core = Fe(0)
Metallic alloy
(Fe,Ni,Si)

Mantle = Fe(II)
(Mg,Fe)₂SiO₄
Olivine

(Mg,Fe)SiO₃
Perovskite
structure

The interior of the Earth is chemically reduced (Fe/FeO)

The exterior of the Earth is chemically oxidized (02/H20)

This has not always been the case First rise of atmospheric O₂ at -2.3 Ga (age of the Earth -4.5 Ga)

OXYGEN PRODUCTION

$$CO_2 + H_2O < ---> CH_2O + O_2$$

OXYGEN PRODUCTION

$$CO_2 + H_2O < ---> CH_2O + O_2$$

Storage of CO₂: 10¹³ moles of C/yr

Production of $O_2: 10^{13}$ moles de O_2/yr

Regulation of O₂ by plate tectonics

Iron oxidation at mid-oceanic ridges

$$O_2 + 4 H^+ + 4 e^- ---> 2 H_2O$$

$$Fe^{2+} + 2H_2O ---> FeOOH + 3 H^+ + e^-$$

$$O_2+4 \text{ Fe}^{2+}+6H_2O--> 4\text{Fe}OOH + 8H^+$$

This energy resource is used by deep ecosystems to make biomass

PRIMARY PRODUCTION BY IRON OXIDIZING BACTERIA

Alexandre Gloter, Magali Zbinden et al. Image: Alexandre Gloter LPS Projet Geomex: Hydrothermalisme

Iron-oxidizing bacteria

$$O_2 + 4 H^+ + 4 e^- ---> 2 H_2O$$

 $CO_2 + 4 H^+ + 4 e^- ---> CH_2O + H_2O$

$$Fe^{2+} + 2H_2O ---> FeOOH + 3 H^+ + e^-$$

$$O_2+4 \text{ Fe}^{2+}+6H_2O--> 4\text{Fe}OOH + 8H^+$$

 $CO_2+4 \text{ Fe}^{2+}+7H_2O--> 4\text{Fe}OOH + CH_2O + 8H^+$

Biological alteration of solids

Channels have been interpreted as biogenic weathering features

Important implications for global geochemistry and search for ancient traces of life

Reducing power of the inside Earth: Hydrogen generation

$$Fe^{2+} + 2H_2O ---> FeOOH + 3 H^+ + e^-$$

$$2 H^{+} + 2 e^{-} ---> H_{2}$$

$$2 \text{ Fe}^{2+} + 4 \text{ H}_2\text{O} --> 2 \text{ FeOOH} + 4\text{H}^+ + \text{H}_2$$

Role of high temperatures

Reducing power of the inside Earth: Hydrogen generation

$$Fe^{2+} + 2H_2O ---> FeOOH + 3 H^+ + e^-$$

$$2 H^{+} + 2 e^{-} ---> H_{2}$$

Natural H₂ as an energy source?