L2 - Physique pour les sciences de l'univers TD N°3

Vendredi 23 février 2007

Exercice 1 : Force gravitationnelle Vs. Force de Coulomb

- 1) On voudrait comparer les importances relatives de
 - la force gravitationnelle entre la Terre et un proton ou un électron,
 - la force gravitationnelle entre un proton et un électron,
 - la force de Coulomb entre un proton et un électron, dans le cas d'un atome d'hydrogène par exemple.

On donne les valeurs numériques de : Masse de l'électron : $9.109\ 10^{-31}\ kg$

Masse du proton : $1.672 ext{ } 10^{-27} ext{ } kg$

Masse de la Terre : 5.974 10²⁴ kg Rayon de la Terre : 6371 km

Constante gravitationnelle de Newton :

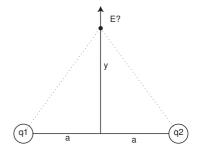
 $G = 6.674 \ 10^{-11} \ m^3/kg \ s^2$

Charge de l'électron : $-1.602 \, 10^{-19} \, C$ Charge du proton : $1.602 \, 10^{-19} \, C$

Rayon de l'atome d'hydrogène : $5 \ 10^{-11} \ m$

Constante de Coulomb : $\kappa = 1/4\pi\epsilon_0 = 8.987 \ 10^9 \ N/F$

2) Un objet de masse $1.5 \ 10^{-3}$ kg possède une charge positive de 24μ C. Il est placé dans un champ électrique vertical dirigé vers le haut, d'intensité $610 \ N/C$. Que peut-il se passer?


Exercice 2 : Potentiel électrique en 1-D

- 1) On place une charge $q_1 = 15\mu\mathrm{C}$ à l'origine d'un axe (Ox): déterminer et tracer le potentiel en fonction de x.
- 2) On place une deuxième charge $q_2 = 6\mu C$ en $x_0 = 2$ m. Déterminer et tracer le potentiel engendré par ces 2 charges.
- 3) On ajoute enfin une charge négative $q_3 = -4\mu C$ en x. Représenter les forces qui s'exercent sur la charge négative dans les 3 cas x < 0, $0 < x < x_0$ et $x > x_0$ sur un dessin. Pour quelle valeur de x la force exercée sur la charge q_3 est-elle nulle?

Exercice 3 : Champ électrique en 2-D

Deux charges q1 et q2 sont placées à une distance 2a l'une de l'autre. On regarde un point situé sur l'axe orthogonal qui passe au milieu de ces 2 charges, à une hauteur y (voir figure). On veut calculer le champ électrique en ce point : et faire un dessin.

- 1) Formellement pour $q_1=q_2$, puis $q_1=-q_2$, et on cherchera une formule simplifiée pour le cas $y\gg a$.
- 2) Numériquement, si a = 30 cm, y = 40 cm et $q_1 = 2\mu$ C.

