L2 - Physique pour les sciences de l'univers TD N°1

Jeudi 16 février 2006

Exercice 1 : Règles de calcul vectoriel

Montrer les égalités suivantes :

1) $\overrightarrow{\nabla}(\lambda\mu) = \lambda \overrightarrow{\nabla}\mu + \mu \overrightarrow{\nabla}\lambda$.

1) $\overrightarrow{\nabla} (\lambda \overrightarrow{A}) = \lambda \overrightarrow{\nabla} \overrightarrow{A} + \overrightarrow{\mu} \overrightarrow{\nabla} \lambda$. 2) $\overrightarrow{\nabla} \cdot (\lambda \overrightarrow{A}) = \lambda \overrightarrow{\nabla} (\overrightarrow{\nabla} \cdot \overrightarrow{A}) + (\overrightarrow{\nabla} \lambda) \cdot \overrightarrow{A}$. 3) $\overrightarrow{\nabla} \cdot (\overrightarrow{A} \times \overrightarrow{B}) = -\overrightarrow{A} \cdot (\overrightarrow{\nabla} \times \overrightarrow{B}) + (\overrightarrow{\nabla} \times \overrightarrow{A}) \cdot \overrightarrow{B}$. 4) $\overrightarrow{\nabla} \times (\lambda \overrightarrow{A}) = \lambda \overrightarrow{\nabla} \times \overrightarrow{A} + (\overrightarrow{\nabla} \lambda) \times \overrightarrow{A}$.

5) Double produit vectoriel : $\overrightarrow{A} \times (\overrightarrow{B} \times \overrightarrow{C}) = (\overrightarrow{A} \cdot \overrightarrow{C}) \overrightarrow{B} - (\overrightarrow{A} \cdot \overrightarrow{B}) \overrightarrow{C}$. 6) Application pour : $\overrightarrow{\nabla} \times (\overrightarrow{A} \times \overrightarrow{B}) = \overrightarrow{A} \cdot (\overrightarrow{\nabla} \cdot \overrightarrow{B}) - \overrightarrow{B} \cdot (\overrightarrow{\nabla} \cdot \overrightarrow{A}) + (\overrightarrow{B} \cdot \overrightarrow{\nabla}) \overrightarrow{A} - (\overrightarrow{A} \cdot \overrightarrow{\nabla}) \overrightarrow{B}$.

7) Calculer div $\overrightarrow{\operatorname{rot}} \overrightarrow{u}$, $\overrightarrow{\operatorname{rot}} \overrightarrow{\operatorname{grad}} f$, div $\overrightarrow{\operatorname{grad}} f$.

Exercice 2 : Résultats à retenir

- 1) Soit un champ scalaire f(r) = r. Calculer le gradient de ce champ scalaire, en coordonnées cartésiennes, puis en sphériques.
- 2) Justifier pourquoi, si f est une fonction de \mathbf{R} dans \mathbf{R} , $\overrightarrow{\operatorname{grad}} f(x) = \frac{df}{dx} \overrightarrow{\operatorname{grad}} x$.
- 3) Exprimer $\overrightarrow{\text{grad}} f$, pour f une fonction de $\mathbf R$ dans $\mathbf R$ telle que :

a.
$$f(r) = r^n, n \in \mathbb{N}$$

b.
$$f(r) = \frac{1}{r}$$

a.
$$f(r) = r^n, n \in \mathbb{N}$$
,
b. $f(r) = \frac{1}{r}$,
c. $f(r) = \frac{1}{r^n}, n \in \mathbb{N}$,
d. $f(r) = \ln r$.

$$d. f(r) = \ln r.$$

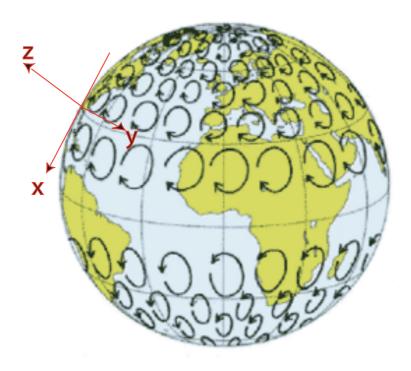
Exercice 3: Produit vectoriel

Rappel sur la force de Coriolis : un objet qui se déplace à une vitesse \overrightarrow{v} dans un référentiel en rotation $\overrightarrow{\Omega}$ "ressent" une force de Coriolis $\overrightarrow{F_c} = 2m \overrightarrow{\Omega} \wedge \overrightarrow{v}$.

On considère ici un point immobile à la surface de la Terre à une latitude λ .

- 1) Dans le repère cartésien associé à ce point, les axes (Ox), (Oy) représentent les directions Nord-Sud et Ouest-Est respectivement et (Oz) est l'axe vertical perpendiculaire à la surface. Comment exprime-t-on $\overrightarrow{\Omega}$ le vecteur de rotation de la Terre dans ce repère? Quelle est sa norme?
- 2) Le point se déplace alors à une vitesse $\overrightarrow{v} = (v_x, v_y, 0)$. Déterminer l'accélération de Coriolis ressentie.

3) Application numérique : $\lambda=45^\circ,\ v_x=360\ \mathrm{km/h},\ v_y=0.$ Comparer les valeurs de l'accélération de Coriolis et de l'accélération de la pesanteur g. Commenter?



Exercice 4: Champs et potentiels

Tout point M(x, y, z) de l'espace est défini par sa position par rapport à un point fixe arbitraire $O: \overrightarrow{OM} = \overrightarrow{r}$. On note la distance au point $O: OM = r = \sqrt{x^2 + y^2 + z^2}$. Chaque question est indépendante.

- 1) Soit un champ vectoriel $\overrightarrow{u}(\overrightarrow{r})$. Calculer le divergent de ce champ si $\overrightarrow{u}(\overrightarrow{r}) = \overrightarrow{r}$, $\overrightarrow{u}(\overrightarrow{r}) = \frac{\overrightarrow{r}}{r}$, $\overrightarrow{u}(\overrightarrow{r}) = f(r)\overrightarrow{r}$. Ces champs dérivent-ils d'un potentiel? Si oui lequel?
- 2) On considère le champ scalaire $f(M) = \frac{\ln r}{r}$. Déterminer le champ vectoriel $\overrightarrow{u}(M)$ dérivé de ce potentiel. 3) Soit un champ vectoriel qui à un point de l'espace M(x,y,z) associe le vecteur $\overrightarrow{u}=(xz,y,\phi(z))$. Déterminer ϕ
- pour que div $\overrightarrow{u} = z$.
- 4) Soit un champ scalaire f(M) = xy + yz + xz. On se place au point A = (1, 1, 1): dans quelle direction la variation du champ est-elle la plus rapide? Et au point B = (1, 2, 3)?