- A. Peltier & A. Chulliat, On the feasibility of promptly producing quasi-definitive magnetic observatory data, Earth, Planets and Space, sous presse;
- '.'Les observatoires magnétiques mesurent en continue le champ magnétique terrestre. Leurs données sont largement utilisées pour calculer les modèles de variation du champ magnétique, le plus souvent en association avec les données satellites ou historiques, mais aussi pour étudier les processus rapides générés au sein du noyau. Avec la venue des données satellites, de nombreux utilisateurs ont exprimé leur besoin d'accéder rapidement à des données magnétiques d'observatoire corrigées d'une ligne de base. Actuellement de telles données ne sont produites qu’une fois par an. Cette étude statistique menée sur les données de 2008 de neuf observatoires magnétiques "InterMagnet" démontre la faisabilité de produire rapidement des données quasi-définitives de bonne qualité (erreur inférieure à la norme "InterMagnet" de 5 nT).
- J. O. Dickey, S. L. Marcus and O. de Viron (2010), Closure in the Earth’s angular momentum budget observed from sub-seasonal periods down to four days: No core effects needed, Geophys. Res. Lett., 37, LXXXXX, doi:10.1029/29 2009GL041118.
- Il y a un peu plus de 10 ans, deux auteurs américains avaient notés que les fluctuations de la rotation de la Terre étaient en retard d'un jour environ par rapport au moment où l'atmosphère les générait. Ils attribuaient alors cela a un effet du noyau qui garderait le moment cinétique pendant quelques temps avant de le relâcher dans la rotation de la Terre. En utilisant des données atmosphérique plus récentes et pris en considération un effet océanique, nous avons montré que ce retard n'existait pas. Ce n'est que la mauvaise qualité des données qui faisait apparaître ce retard ; le noyau n'est donc pas un acteur important dans la rotation de la Terre à cette échelle de temps.
- M. Greff-Lefftz, L. Metivier, J. Besse,Dynamic Mantle Density Heterogeneities and global geodetic observables. sous presse.
- Les anomalies de masse du manteau varient sur des échelles de temps géologiques: elles sont responsables du géoïde observe actuellement et des topographies qui existent aux différentes discontinuités a l'intérieur de la Terre (comme l'interface noyau-manteau, par exemple) et elles induisent des variations temporelles lentes dans ces quantités. Pour un modèle simple d'hétérogénéités de masse dans le manteau, nous avons calcule la variation temporelle du coefficient de degré 2 dans la décomposition en harmoniques sphériques du géopotentiel, J2, ainsi que celle du géocentre. Nous trouvons que: a) Les anomalies de masse du manteau expliquent l'aplatissement non-hydrostatique de la Terre actuelle. Cependant elles varient sur une échelle de temps trop lente pour perturber significativement la dérivée temporelle du coefficient J2. b) bien qu’il y ait une différence de quelques centaines de mètres entre le centre de figure et de la centre de masse de la Terre, la variation séculaire du mouvement du géocentre est un ordre de grandeur plus faible que celle induite par le rebond post-glaciaire.
- H. Rouby, M. Greff-Lefftz, and J. Besse Mantle dynamics, geoid, inertia and TPW since 120 Ma. EPSL, accepté pour publication.
- Les données paléomagnétiques indiquent, pour les derniers 100 Ma, un mouvement relatif inférieur à 10 degres entre le référentiel des points chauds et le référentiel lié à l'axe du dipole magnétique (supposé confondu à l'axe de rotation sur les échelles de temps géologiques).Ce mouvement, appelé True Polar Wander (TPW), varie donc à la surface de la Terre avec un taux compris entre 0.1 et 0.2 degré par million d'années. Nous montrons que cette stabilité a long terme de l'axe de rotation terrestre peut être une conséquence de la variation temporelle a grande échelle des anomalies de masse du manteau (qui engendre par conservation du moment cinétique, une grande dérive du pôle de rotation, c'est-a-dire d'un très grand déplacement de l'axe de rotation relativement à la planète elle-même mais fixe par rapport aux étoiles, si le moment des forces externes est nul) et donc être liée à la stabilité des zones de subduction et des deux superswells associes aux dômes du manteau profond.
- G. Le Hir, Y. Donnadieu, G. Krinner, and G. Ramstein, Toward the Snowball Earth Deglaciation..., Climate Dynamics DOI 10.1007/s00382-010-0748-8, 382, 748.
- Depuis 1992 et l’émergence de la théorie de la Terre boule de neige, les géologues et les modélisateurs du climat ont cherché à comprendre comment la planète Terre, une fois entrée dans une période de glaciation globale, aurait pu sortir de cet état climatique extrême. L'état actuel des connaissances suggère que l’accumulation du CO2 volcanique dans l’atmosphère n’est pas un processus suffisant pour déclencher, à lui seul, la déglaciation d’une Terre devenue entièrement blanche. Dans notre étude, nous avons utilisé un Modèle de climat dit de Circulation Générale (GCM) dans lequel une libération de cendres, due à une éruption volcanique semblable à celle du Toba (73 000ans), intervenait lorsque l’atmosphère était fortement enrichie en CO2. Nous avons montré que la baisse d’albédo due à la présence d’une neige/glace sale permettait probablement de sortir brutalement d’une glaciation globale, résultat en accord avec les observations sédimentaires suggérant, elles aussi, une déglaciation soudaine.
- A. Chulliat and N. Olsen, Observation of magnetic diffusion in the Earth's outer core from Magsat, Oersted and CHAMP data, J. of Geophys. Res., sous presse.
- L’essentiel du champ magnétique terrestre est généré dans le noyau (liquide) par un processus appelé géodynamo. Des mesures satellitaires permettent de détecter la trace à la surface du noyau du phénomène de diffusion magnétique prévu par la théorie et les simulations numériques. Ces observations remettent en cause l’hypothèse classique selon laquelle la diffusion est négligeable à l’échelle séculaire devant l’advection du champ magnétique par les mouvements du noyau.